
Mon. Not. R. Astron. Soc. 000, 000–000 (0000) Printed 14 September 2017 (MN LATEX style file v2.2)

Cosmoligical N-body code GLAM.

Anatoly Klypin1⋆ and Francisco Prada2

1 Astronomy Department, New Mexico State University, Las Cruces, NM, USA
2 Instituto de Astrof́ısica de Andalućıa (CSIC), Glorieta de la Astronomı́a, E-18080 Granada, Spain

14 September 2017

ABSTRACT

Here we provide description of the GLAM code: a parallel version of the Particle-Mesh
cosmological code, that provides us with a tool to quickly generate a large number of
N -body cosmological simulations with a reasonable speed and acceptable resolution.
We call our code Parallel Particle-Mesh GLAM (PPM-GLAM), which is the core
of the GLAM (GaLAxy Mocks) pipeline for massive production of galaxy catalogs.
PPM-GLAM generates the density field, including peculiar velocities, for a particular
cosmological model and initial conditions.

Key words: cosmology: Large scale structure - dark matter - galaxies: halos - meth-
ods: numerical

1 INTRODUCTION

Requirements for the generation of many thousands of high-
quality simulations are extreme. Existing codes such as
GADGET, RAMSES, or ART are powerful for large high-
resolution simulations, but they are not fast enough for
medium quality large-number of realisations required for
analysis and interpretation of large galaxy surveys. New
types of codes (e.g., White et al. 2014; Tassev et al. 2013;
Feng et al. 2016) are being developed for this purpose. Here,
we present the performance results of our N-body Parallel
Particle-Mesh GLAM code (PPM-GLAM), which is the core
of the GLAM (GaLAxy Mocks) pipeline for the massive pro-
duction of large galaxy catalogs. PPM-GLAM generates the
density field, including peculiar velocities, for a particular
cosmological model and initial conditions.

There are a number of advantages of cosmological
Particle-Mesh (PM) codes (Klypin & Shandarin 1983; Hock-
ney & Eastwood 1988; Klypin & Holtzman 1997) that make
them useful on their own to generating a large number of
galaxy mocks (e.g., QPM, COLA, FastPM; White et al.
2014; Tassev et al. 2013; Feng et al. 2016), or as a component
of more complex hybrid TREE-PM (e.g., Gadget2, HACC;
Springel 2005; Habib et al. 2014) and Adaptive-Mesh-
Refinement codes (e.g. ART, RAMSES, ENZO; Kravtsov
et al. 1997; Teyssier 2002; Bryan et al. 2014). The main
advantage of PM codes is that they are the fastest codes
available and they can provide – after careful tunig of pa-
rameters – accurate enough simulations for many projects.

⋆ E-mail: aklypin@nmsu.edu

In Section 2 we discuss the main features of our PPM-
GLAM simulation code and give estimates of the memory,
time-stepping and cpu required to make simulations with
the code. Performance of the GLAM code is described in
Section 3 Main algorithms for density assignment, Poisson
solving, and particles advance can be found in Section 4.
Parallelization is discussed in Section 5. Section 6 provides
tests for the effects of mass and force resolutions, and the
effects of time-stepping.

2 PARALLEL PARTICLE-MESH GLAM CODE

Here, we discuss the main features of the PPM-GLAM code
and provide the motivation for the selection of appropriate
numerical parameters.

The code uses a regularly spaced three-dimensional
mesh of size N3

g that covers the cubic domain L3 of a sim-
ulation box. The size of a cell ∆x = L/Ng and the mass
of each particle mp define the force and mass resolution re-
spectively:

mp = Ωm ρcr,0

»

L

Np

–3

= (1)

= 8.517 × 1010

»

Ωm

0.30

– »

L/h−1Gpc

Np/1000

–3

h−1M⊙, (2)

∆x =

»

L/h−1Gpc

Ng/1000

–

h−1Mpc, (3)

where N3
p is the number of particles and ρcr,0 is the critical

density of the universe at present.
PPM-GLAM solves the Poisson equation for the gravi-

c© 0000 RAS

2 Klypin & Prada

tational potential in a periodical cube using a Fast Fourier
Transformation (FFT) algorithm. The dark matter den-
sity field used in the Poisson equation is obtained with the
Cloud-In-Cell (CIC) scheme using the positions of dark mat-
ter particles. Once the gravitational potential is obtained, it
is numerically differentiated and interpolated to the position
of each particle. Then, particle positions and velocities are
advanced in time using the second order leap-frog scheme.
The time-step is increased periodically as discussed in Ap-
pendix A. Thus, a standard PM code has three steps that
are repeated many times until the system reached its final
moment of evolution: (1) Obtain the density field on a 3D-
mesh that covers the computational volume, (2) Solve the
Poisson equation, and (3) Advance particles to the next mo-
ment of time.

The computational cost of a single PPM-GLAM simula-
tion depends on the number of time-steps Ns, the size of the
3D-mesh N3

g , and the adopted number of particles N3
p . The

CPU required to solve the Poisson equation is mostly deter-
mined by the cost of performing a single 1D-FFT. We in-
corporate all numerical factors into one coefficient and write
the CPU for the Poisson solver as AN3

g . The costs of den-
sity assignment and particle displacement (including poten-
tial differentiation) scale proportionally to N3

p . In total, the
CPU time Ttot required for a single PPM-GLAM run is:

Ttot = Ns

ˆ

ANg
3 + (B + C)Np

3
˜

, (4)

where B and C are the coefficients for scaling the CPU es-
timate for particle displacements and density assignment.
These numerical factors were estimated for different proces-
sors currently used for N-body simulations and are given
in Table 1. For a typical simulation with parameters Ng =
2400, Np = Ng/2 the CPU per time-step is ∼ 0.5 hours and
wall-clock time per step ∼ 1 − 3minutes. The total cost of
1000 PPM-GLAM realizations with Ns = 150 is 75K CPU
hours, which is a modest allocation even for a small compu-
tational cluster or a supercomputer center.

Memory is another critical factor that should be con-
sidered when selecting the parameters of our simulations.
PPM-GLAM uses only one 3D-mesh for storing both den-
sity and gravitational potential, and only one set of particle
coordinates and velocities. Thus, for single precision vari-
ables the total required memory Mtot is:

Mtot = 4N3
g + 24N3

p Bytes, (5)

= 29.8

„

Ng

2000

«3

+ 22.3

„

Np

1000

«3

GB, (6)

= 52

„

Np

1000

«3

GB, for Ng = 2Np. (7)

The number of time-steps Ns is proportional to the com-
putational costs of the simulations. This is why reducing
the number of steps is important for producing a large set
of realisations. White et al. (2014) and Koda et al. (2016)
use just ∼ 10 time-steps for their QPM and COLA simu-
lations. Feng et al. (2016) and Izard et al. (2015) advocate
using Ns ≈ 40 steps for Fast-PM and ICE-COLA. The ques-
tion still remains: what optimal number of time-steps should
be adopted? However, there is no answer to this question
without specifying the required force resolution, and with-

out specifying how the simulations will be used to generate
mock galaxies.

Below we provide a detailed discussion on the effects of
time-stepping. We argue that for the stability and accuracy
of the integration of the dark matter particle trajectories
inside dense (quasi-) virialised objects, such as clusters of
galaxies, the time-step ∆t must be smaller enough to satisfy
the constraints given by eqs. (31) and (33). For example,
FastPM simulations with 40 time-steps and force resolution
of ∆x = 0.2 h−1Mpc (see Feng et al. 2016) do not satisfy
these conditions and would require 2-2.5 times more time-
steps. However, a small number of time-steps manifests it-
self not in the power spectrum (though, some decline in P (k)
happens at k ∼ 1h−1Mpc). Its effect is mostly observed in a
significantly reduced fraction of volume with large overden-
sities and random velocities, which potentially introduces
undesirable scale-dependent bias.

Because our main goal is to produce simulations with
the minimum corrections to the local density and peculiar
velocities, we use Ns ≈ 100 − 200 time-steps in our PPM-
GLAM simulations. This number of steps also removes the
need to split particle displacements into quasi-linear ones
and the deviations from quasi-linear predictions. Thus, in
this way we greatly reduce the complexity of the code and
increase its speed, while also substantially reduce the mem-
ory requirements.

Finally, we estimate the computational resources – CPU
time and computer memory – required to run a large set of
PPM-GLAM simulations for different combinations of box
size L, accuracy of the power spectrum and mesh size Ng.
There are many factors that define the optimal selection
of computational parameters, including the number of time-
steps, the number of realisations, the effects of super-sample
waves and the limitations on the available computer mem-
ory. The estimates for (i) the wave-number k1% at witch the
error in P (k) reaches the level of 1%:

k1% =
0.3

∆x
=

0.3Ng

L
, (8)

where the box size L is given in units of h−1Mpc. Lines
of constant k1% are shown as dotted (blue) lines in Fig-
ure 1. The larger the value of k1%, better is the performance
reached at smaller scales. (ii) to estimate the number of
time-steps Ns required for a given simulation, we assume
that on average the particles should not move more than
1/3 of a cell. This includes fast-moving particles in clusters
of galaxies. We assume that the rms 3D-velocity for the par-
ticles in galaxy clusters is v ≈ 2000 km sec−1 . Estimating
the number of steps as a/∆a = Ns and using eq. (33) with
β = 1/3, we find that the number of time-steps is

Ns ≈
60Ng

L
, (9)

where the box size is given in units of h−1Mpc.
Thus, the total amount of CPU-hours required for pro-

ducing Nr simulations with box size L and mesh size Ng

is

ttot = NrNsNg
3t1 = 2.4 × 10−9NrN

4
g L−1, (10)

where t1 is the CPU-hours required per time-step. Here we
use the timings provided in the first raw of Table 1. It is

c© 0000 RAS, MNRAS 000, 000–000

GLAM desciption 3

Table 1. Timing of the PPM-GLAM code for different computational systems. The columns give: (1) number of particles
Np, (2) number of grid cells Ng, (3) processor type and number of cores, (4) the total wall-clock time per step in minutes,
(5) wall-clock time for the Poisson solver in minutes, (6) advancing particles timing in minutes and (7) density assignment
timing in minutes. Columns (8–10) give the parameters A, B, C for CPU time per cell and per particle in eq. (4) in units
of 10−8. Other columns provide: (11) CPU time per step in minutes, (12) CPU time per step per particle in 10−6 seconds,

(13) CPU time in hours for a un with 150 time-steps.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
Np Ng Processor Total Poisson Particles Density A B C CPU CPU CPU

cores min min min min step particle run

12003 24003 Intel E5-2680v4 1.20 1.02 0.07 0.10 12.4 6.8 9.8 33.6 1.17 84
2.4GHz 2x14

12003 24003 Intel E5-2680v3 1.44 1.22 0.08 0.14 15.0 6.7 11.7 34.5 1.20 86
2.5GHz 2x12

5003 10003 Intel E5-2680v4 0.075 0.062 0.0039 0.0088 10.4 5.2 11.8 2.1 1.01 5.2
2.4GHz 2x14

10003 20003 Intel E5-2680v4 0.65 0.55 0.037 0.057 11.5 6.2 9.6 18.2 1.09 45.5
2.4GHz 2x14

13003 26003 AMD 6174 2.23 1.72 0.21 0.30 28.2 27.5 39.3 107 2.92 267
2.4GHz 4x12

16003 32003 AMD 6376 2.44 2.11 0.11 0.22 24.7 10.3 20.6 156 2.28 390
2.3GHz 4x16

also convenient to use the total volume covered by all set
of realisations, i.e. V = NrL3. Using the expressions for the
total volume and CPU-hours, V and ttot, we can write a
relation between the required box size L and grid Ng to run
many simulations covering a volume V under the condition
that the total CPU is ttot:

L =

„

2.4 × 10−9V

ttot

«1/4

Ng. (11)

In Figure 1 we plot lines of L(Ng) for a somewhat ar-
bitrary value of V = 5000(h−1Gpc)3 and for three differ-
ent CPU times of 105, 106, 107CPU-hours. Additional con-
straints are coming from the SSC modes that limit the box
size, which we assume to be bigger than L = 500 h−1Mpc.
The number of realisations should be large (thousands) re-
gardless of the total covered volume. This tends to limit the
box size to lower values, or, equivalently, to increase pro-
portionally the CPU time. All theses limitations are shown
in Figure 1. They indicate that currently the selection is
limited to the parameters inside the oval drawn in the plot.

The results presented in this work demonstrate that the
Parallel Particle-Mesh GLAM code, at a very low compu-
tational cost, generates the accurate dark matter clustering
statistics required for the production of thousands of mock
galaxy catalogs. The next step, which will be presented in a
future paper, will be to develop a bias scheme that will take
as input the accurate density field provided by PPM-GLAM
and produce those large galaxy catalogs in the context of the
upcoming and existing large-scale galaxy surveys.

3 PERFORMANCE OF THE GLAM CODE

The PPM-GLAM code was tested on a variety of processors
(both Intel and AMD) and computer platforms. Results of
code timing are given in Table 1 for different hardware con-
figurations and parameters of the simulations. As might have
been expected, the Intel processors are about twice faster
than AMD when timing results are scaled to CPU-hours
per core. However, this is somewhat deceiving because the

AMD processors provide about twice more cores. If this is
taken into account, then the difference between AMD and
Intel processors becomes smaller. For example, a single com-
putational node with four AMD-6376 processors has the the
same performance as a node with two Intel E5-2680v4 pro-
cessors when rescaled to the same computational task.

Column 12 in Table 1 provides the CPU time scaled
per individual particle. In that respect it is a measure of the
efficiency of the parallelisation and performance of our PM
code. It shows that within ∼ 20% the code scales well for
different number particles and mesh sizes.

The computational cost of a PPM-GLAM simulation
depends on the number of time-steps Ns, the size of the
3D-mesh N3

g , and the adopted number of particles N3
p . The

CPU required to solve the Poisson equation is mostly deter-
mined by the cost of performing a single 1D-FFT. Thus, it
is proportional to (Ng log Ng)

3. There are some additional
costs (e.g., two 3D-matrix transpositions to align the mesh
with the memory of individual computational processors),
but those are relatively small.

The required memory for a simulation is given by
eq. (7). We could have used double precision accuracy for
the coordinates, as adopted in FastPM by Feng et al. (2016),
but our estimates show that the loss of coordinates accuracy
at the edge of the simulation box are practically negligible.
For example, for an extreme configuration of a 1000 h−1Gpc
simulation box with Ng = 3000 mesh particles moving
for 13 Gyrs with a constant drift velocity of 500 kmsec−1 ,
and with additional random velocity of 1000 km sec−1 , will
have an error of just 2 × 10−4h−1Mpc. This is very small
uncertainty as compared with the simulation cell size of
0.33 h−1Mpc.

While the CPU speed and RAM memory estimates are
very favorable for a very large number of medium-resolution
PPM-GLAM simulations, equations (4-7) clearly indicate
that increasing either the resolution or losing resolution
for some code parameter configurations can have serious
repercussions. For example, increasing the force resolution
∆x = L/Ng by a factor of two, increases the computational
CPU cost eight times, i.e. a very large factor. Thus, the pa-

c© 0000 RAS, MNRAS 000, 000–000

4 Klypin & Prada

Figure 1. Dependance of the different numerical parameters of the PPM-GLAM simulations on box- and mesh-size. The vertical lines at
the top-axis of the plot show the computer memory required for a simulation with mesh-size Ngrid and number of particles Np = Ngrid/2.
Dot-dashed lines correspond to the number of CPU-hours needed to make a single realisation with the given combination of mesh-size
(and particles) and number of steps as defined by eq. (9). Diagonal dotted (blue) lines show constant values of k1% (the wave-number
at which the error in P (k) reaches the level of 1%). In order to achieve better resolution than a selected value of k1%, the simulation
parameters (box- and mesh-size) should be set to those values located below the corresponding k1% dotted line. Dashed (red) lines are
lines of constant CPU time (in hours) required to make a set of PPM-GLAM simulations with the cumulative volume of 5000 (h−1Gpc)3.
In order to avoid large Super Sample Covariance (SSC) defects, the simulations should have large enough box-size L>∼ 500 h−1Mpc. The
requirements to have a large number of realisations Nr, for a given CPU time and accuracy, tend to reduce the simulation box-size.
Overall, these different constraints tend to limit the selection of computational parameters to the oval area indicated in the plot.

rameters of the simulations should be selected very carefully.
Loss of resolution may happen as a side-effect of a modifi-
cation in algorithms that at first sight seems reasonable.

For example, the QPM code (White et al. 2014) uses
the Green functions given in eq. (16) instead of the more
advanced eq. (18) (Hockney & Eastwood 1988) adopted in
PPM-GLAM. Our tests show that this change alone reduces
the force resolution by about 20 percent, which seems like
a small loss, but not for a cosmological PM code. In order
to recover the loss, one would need to increase the CPU
and memory by a factor 1.7. Because PM codes tend to
run at the limit of available computer memory, this factor
represents a serious disadvantage. One may also think of im-

proving the PM code, for example, by increasing the order
of the gravitational potential interpolation scheme (QPM;
White et al. 2014) or by replacing numerical differentiation
by obtaining acceleration in the Fourier-space (COLA; Tas-
sev et al. 2013). Yet, higher-order schemes will effectively
reduce the resolution, and when compared at the same reso-
lution, these modifications only slow down the code without
gaining numerical accuracy.

One may try to avoid numerical differentiation of
the gravitational potential by solving the acceleration in
Fourier-space, as done in the COLA and FastPM codes (Tas-
sev et al. 2013; Feng et al. 2016). Potentially, that strategy
could increase the resolution, but it is not clear whether

c© 0000 RAS, MNRAS 000, 000–000

GLAM desciption 5

this procedure actually is beneficial1. However, the compu-
tational cost of such a modification is very substantial. It
requires doubling the memory (additional 3D-mesh for ac-
celerations) and also doubling the CPU time (3 inverse FFTs
instead of just one in our PPM-GLAM code).

4 ALGORITHMS

In general, a cosmological PM code consists of three steps
to evolve the particles: (1) Using the particle positions r to
obtain the density ρi,j,k at the nodes of an homogenous 3D-
mesh that covers the computational domain, (2) Solve the
Poisson equation on the mesh, and (3) advance the particles
to a new moment of time.

4.1 Density field:

We start with the calculation of the density field produced
by N3

p particles on the N3
g nodes of the mesh. In order to

assign the particle density to the 3D-mesh, we introduce a
particle shape (Hockney & Eastwood 1988). If S(x) is the
density at distance x from the particle and ∆x is the cell
size, then the density at distance (x, y, z) is the product
S(x)S(y)S(z). Two choices for S are adopted: Cloud-In-Cell
(CIC) and Triangular Shaped Cloud (TSC). Here we will use
the CIC scheme, i.e.

CIC : S(x) =
1

∆x

(

1, |x| < ∆x/2

0, otherwise
. (12)

The fraction of particle mass assigned to a cell is just
a product of three weight functions w(x)w(y)w(z), where
r = rp − xi is the distance between particles with co-
ordinates xp and cell center xi. The weight function is

w(x) =
R xi+∆/2

xi−∆/2
S(xp − x′)dx′:

CIC : w(x) =

(

1 − |x|/∆x, |x| < ∆x

0, otherwise
.

(13)
Although these relations given in eqs.(12–13) look some-

what complicated, in reality they require very few operations
in the code. For the CIC scheme a particle contributes to the
8 nearest cells. If the coordinates are scaled to be from 0 to
Ng, where Ng is the size of the grid in each direction, then
taking an integer part of each particle coordinate with center
(x, y, z) - in Fortran: i = INT (x)... - gives the lower bottom
grid cell (i, j, k). Then, the distance of the particle from that
cell center is dx = x − i, dy = y − j, dz = z − k.

4.2 Gravitational potential

Having the density field ρi,j,k, we can estimate the gravita-
tional potential by solving the Poisson equation, which for

1 We compare the errors in the power spectra at k = 0.3hMpc−1

shown in Figure 2 with the FastPM results Feng et al. (2016) (see
their Figure 2). For simulations with the same force resolution of
0.34h−1Mpc, PPM-GLAM performs more accurately in spite of
the fact that FastPM used Fourier-space to avoid the numerical
differentiation of the gravitational potential.

clarity we simply write as

∇2φ = 4πGρ(x). (14)

We start with applying a 3D Fast Fourier Transforma-
tion (FFT) to the density field. That gives us the Fourier
components on the same grid ρ̃k, where k is a vector with
integer components in the range 0, 1, . . . , Ng − 1. Now we
multiply the harmonics ρ̃i,j,k by the Green functions G(k)
to obtain the Fourier harmonic amplitudes of the gravita-
tional potential φ, i.e.

φ̃i,j,k = 4πGρ̃i,j,kG(k), (15)

and then do the inverse FFT to find out the gravitational
potential φi,j,k. Note that all these operations can be or-
ganized in such a way that only one 3D-mesh is used – no
additional RAM memory is required.

The simplest, but not the best, method to derive the
Green functions is to consider φi,j,k and ρi,j,k as amplitudes
of the Fourier decomposition of the gravitational potential
in the computational volume, and then to differentiate the
Fourier harmonics analytically. This gives

G0(k) = −
1

k2
x + k2

y + k2
z

= −

„

L

2π

«2
1

i2 + j2 + k2
. (16)

A better way of solving the Poisson equation that we use in
our PPM-GLAM code is to start with the finite-difference
approximation of the Laplacian ∇2. Here we use a the second
order Taylor expansion for the spacial derivatives:

∇2φ =
∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2

≈ [φi+1,j,k − 2φi,j,k + φi−1,j,k (17)

+ φi,j+1,k − 2φi,j,k + φi,j−1,k

+ φ,j,k+1 − 2φi,j,k + φi,j,k−1]/∆x2.

This approximation leads to a large system of linear alge-
braic equations: Aφ = 4πGρ, where ρ is the vector on the
right hand side, φ is the solution, and A is the matrix of the
coefficients. All of its diagonal components are equal to -6,
and all 6 nearest off-diagonal components are 1. The solu-
tion of this matrix equation can be found by applying the
Fourier Transformation. This provides another approxima-
tion for the Green functions:

G1(k) =
∆x2

2

»

cos

„

2πi

Ng

«

+ cos

„

2πj

Ng

«

+ cos

„

2πk

Ng

«

− 3

–−1

.

(18)
For small (i, j, k), eq.(18) gives the same results as eq.(15).
However, when (i, j, k) is close to Ng, the finite-difference
scheme G1 provides less suppression for high-frequency har-
monics and thus gives a stronger and more accurate force at
distances closer to the grid spacing ∆x. Hockney & East-
wood (1988) argue that this happens because the finite-
difference approximation partially compensates the dump-
ing of short waves that are related with the density assign-
ment.

c© 0000 RAS, MNRAS 000, 000–000

6 Klypin & Prada

4.3 Time-stepping

We write the particle equations of motions and the Poisson
equation, using the particle momenta p ≡ a2

ẋ, as follows

dx

da
= u, u ≡

p

a3H
, p ≡ a2

ẋ, (19)

dp

da
= g, g ≡ −

∇φ

aH
, (20)

∇2φ =
3

2

H2
0Ω0δdm

a
, (21)

H2 = H2
0

„

Ω0

a3
+ ΩΛ,0

«

, Ω0 + ΩΛ,0 = 1. (22)

Here we specifically assumed a flat ΛCDM cosmological
model with the cosmological constant characterised by the
density parameter ΩΛ,0 at redshift z = 0.

Because we start the simulations at a relatively high
redshift zi ≈ 100, and because the number of time-steps
Ns ≈ 100−200 is not large, the time-stepping scheme should
be carefully selected and tuned. In the sense of the accuracy
of the time-stepping algorithms, there are two regimes: (1)
when fluctuations grow nearly linearly at large redshifts and
when the expansion factor a may change substantially over
a single time-step, and (2) later moments when fluctuations
are in the non-linear regime with a changing very little over
a time-step. Both regimes present a challenge for accurate
simulations with a small number of time-steps. There are
different possibilities in handling these challenges.

At the linear stage of evolution the main concern and
the main test is the linear growth of fluctuations. To ad-
dress this problem COLA (Tassev et al. 2013, 2015) splits
the changes in coordinates into a second-order perturbation
term (estimated by a separate algorithm), and a residual,
which is integrated using N-body methods. Instead, QPM
(White et al. 2014) uses a logarithmic time-step (constant
in ∆a/a). COLA’s time-stepping is a good idea (but very
expensive) for the quasi-linear regime. However, at the very
nonlinear stages of evolution, when the second order pertur-
bation approximation is bound to be not valid, the splitting
of the coordinate advances into two terms that cannot pro-
duce any benefits, and thus, it seems to be just a waste
of CPU. At this stage a constant-step leap-frog scheme is
preferred: it is time-symmetric, second-order accurate and
hamiltonian preserving approximation.

Motivated by these considerations, we select a time-
stepping scheme which uses a constant time-step at low red-
shifts z < zlimit, but periodically increases the time-step at
large redshifts z > zlimit. The parameter zlimit defines the
transition from early quisi-linear to late non-linear regimes.
With a resolution of ∆x = (0.3 − 0.5)h−1Mpc in our sim-
ulations, some halos may start to collapse and virialise at
z < zlimit. This is the stage when we switch the time-
stepping to the normal leap-frog scheme with a constant
time-step. For our simulations we select zlimit = 3.

(i) Early stages of evolution z > zlimit. It is important
to estimate how the terms u and g, in the right-hand-sides of
equations (19-20), evolve with the expansion parameter a at
the linear regime. Because there are terms with large powers
of a, one may be concerned with the accuracy of the integra-
tion of quickly evolving terms. However, when one considers
all the terms, the situation is much less alarming. Indeed,
in the linear regime the peculiar gravitational potential φ

does not change with a, and along the particle trajectory
g(a) ∝ a1/2, leading to p ∝ a3/2 and u ∝ a0(constant).
This means that there are no quickly evolving terms in the
equations of motions. This slow evolution of the u and g

terms allows one to periodically increase the time-step with-
out substantial loss of accuracy. We do it by testing the
magnitude of ∆a/a. If this ratio falls below a specified value
(∆a/a)min (typically 3 − 5 × 10−2), the time-step ∆a is in-
creased by factor 3/2.

We can write the time-stepping scheme using a sequence
of kick K and drift D operators, which are defined as ad-
vances of particle momenta p and particle coordinates x

from moment a to moment a + ∆a:

K(∆a, a, ã) : p(a + ∆a) = p(a) + g(ã)∆a, (23)

D(∆a, a, ã) : x(a + ∆a) = x(a) + u(ã)∆a, (24)

where ã is the moment at which either u or g are estimated.
If we start with particle momenta at the time a−1/2 =

a0 − ∆a/2 (a half time-step behind the coordinates defined
at a0), and use the notation am = a0 + m∆a, the standard
leap-frog scheme can be written as the following sequence of
kick and drift operators:

K(∆a, a−1/2, a0)D(∆a, a0, a1/2) (25)

K(∆a, a1/2, a1)D(∆a, a1, a3/2) (26)

K(∆a, a3/2, a2)D(∆a, a2, a5/2) . . . (27)

When at some moment a0 we need to increase the time-
step by factor 3/2, we do it by making a stronger kick and
then by modifying the time-step to the new value of ∆a′ =
3∆a/2:

K(5∆a/4, a−1/2, a0)D(3∆a/2, a0, a3/4) . . . (28)

After applying the first pair of kick-drift operands, the nor-
mal setup of the leap-frog scheme is restored with the par-
ticles momenta behind the coordinates by a half of the new
time-step. The code continues the integration of the tra-
jectories with a constant time-step until the moment when
∆a/a becomes smaller than the minimum value. The time-
step is increased again by the factor 3/2, and the process
continues.

The truncation error for the variable step scheme can
be found similarly to the way how it is done for the stan-
dard leap-frog scheme by eliminating the velocities from the
scheme, and then by expanding the coordinates in the Tay-
lor series around moment a0. This gives x3/2 − (5/2)x0 +
(3/2)x−1 = (15/8)g0∆a2, and the truncation error ǫ at the
moment of time-step increase a0 is:

ǫ =
5

16
ġ0∆a3, (29)

which should be compared with the truncation of the con-
stant step leap-frog scheme:

ǫ =
1

12
g̈0∆a4. (30)

The truncation error at the moment of modifying the time-
step is clearly larger than for the constant-step leapfrog, but
it is still a third-order approximation. The reason for that is
the selection of the numerical factor 5/4 in the kick operator
(eq. 28), which kills the second-order error. These errors are
only for a single time-step. The cumulative error for a large

c© 0000 RAS, MNRAS 000, 000–000

GLAM desciption 7

number of steps depends on how single-steps errors accu-
mulate. This typically results in scaling the force resolution
ǫ ∝ ∆a2 for the constant time-step. Because there are only
very few number of times when the time-step is increased in
our code (typically 5-10 times for the total ∼ 150 of steps),
the final error is mostly dominated by the cumulative error
of the constant-step kicks and drifts.

(2) Late stages of evolution z < zlimit. As fluctuations
evolve and become very nonlinear, halos start to form, merge
and grow. At this stage the main concern is how accurately
the code traces the evolution of dark matter in halos. The
number of time-steps is an important factor defining the ac-
curacy. However, the number of steps is just one of the fac-
tors: one cannot really find out the required number of steps
without specifying the force resolution and without knowing
the science application and requirements of the simulations.

Our goal is to generate PPM-GLAM simulations that
reproduce the dark matter density and velocity fields with
the resolution of up to ∼ 1/3 − 1/2 h−1Mpc. Peculiar ve-
locities are an integral part of the process implying that
redshift distortions should be simulated, not added posteri-
orly using some analytical prescription. The force resolution
and the magnitude of the peculiar velocities set stringent
constraints on the allowed time-step.

The largest peculiar velocities ∼ 1000 − 3000 km sec−1

occur in clusters and large galaxy groups. The time-step
should be small enough so that per time-step a particle
should move by less than a fraction of a cell. Thus, for both
stability and accuracy of the integration (Hockney & East-
wood 1988),

β ≡
v∆t

∆R
<∼ 1, (31)

were v is the particle velocity, ∆t and ∆R are the time-step
and the (proper) cell size. Assuming that the time-step is
small, we can write ∆t = ∆a/aH(a). If ∆x = ∆R/a is the
comoving cell size, then we can write β in the following form:

β =
v

a∆x

∆a

aH(a)
=

v

∆xH0

∆a

a

r

a

Ω0 + ΩΛa3
. (32)

Scaling velocities and resolution to some characteristic val-
ues we finally write the condition for selecting the time-step
as follows

β = 10

»

∆a

a

– »

v1000

∆xMpc

– r

a

Ω0 + ΩΛa3
< 1, (33)

where v1000 is the peculiar velocity in units of 1000 km sec−1

and ∆xMpc is the comoving cell size in units of h−1Mpc.
This condition is difficult to satisfy if the number of

steps is small. To make an estimate, let’s assume that a
PM code makes 40 time-steps using a constant-step leapfrog
scheme (e.g. ICE-COLA and FastPM Izard et al. 2015;
Feng et al. 2016). This implies that at z ≈ 0 the time-
step is about ∆a/a ≈ 2.5 × 10−2. Because we want the
code to attain realistic velocities inside clusters of galaxies,
we take v = 2000 kmsec−1 . For typical force resolution of
∆x = 0.3 h−1Mpc we find that β = 1.7. In other words, dark
matter particles are moving too fast for this combination of
peculiar velocity and resolution.

What happens if the time-step is too big? In this case
large halos will not be as dense as they should be and ran-
dom velocities are smaller in the central halo regions. This

will be observed as a decline in the power spectrum of dark
matter. For example, Feng et al. (2016) using FastPM find
a decline of 4% in the power spectrum at k = 1h−1Mpc for
simulations with force resolution ∆x = 0.22 h−1Mpc and 40
time-steps. However, the main concern and the main prob-
lem is that the defect depends on the local density and
rms velocity. As such, it affects much more massive clus-
ters, where velocities are large, than small halos with small
rms velocities.

In our simulations the time-step at later moments be-
comes relatively small with a typical value of ∆a/a ≈
(0.75 − 1) × 10−2, which is sufficient even for fast particles
in very massive clusters.

5 PARALLELIZATION

Parallelization of PPM-GLAM is done with OpenMP direc-
tives. Because OpenMP can be applied only to memory on a
single computational node, this limits the number of parti-
cles and force resolution. This also makes the code faster be-
cause the code does not use slow communications across and
iside computational nodes required for MPI parallelization.
Using only OpenMP directives also makes the code simple
and easy to modify. The later is very important because data
analysis routines are still being modified and improved.

For solving the Poisson equation the PPM-GLAM uses
FFT fortran-90 routines for the real-to-real transformations
provided by publicly available code FFT5pack (Swarz-
trauber 1984). This makes the code portable: no libraries
should be installed. Using MKL routines provided by the
Intel Fortran compilers may further improve the code per-
formance.

Each OpenMP thread handles Ng
2 1-D FFT transfor-

mations. After sweeping the 3-D mesh in two directions the
matrix is transposed to improve the data locality. Then the
FFT is applied again twice: to complete the 3-D sweep and
to start the inverse FFT. The matrix is transposed back, and
the other two FFT sweeps are completed. OpenMP Atomic

directives are applied for density assignments, which slows
down the code, but allows it to run in parallel. The motion
of particles is a naively parallel part of the code. Overall,
the code uses only one 3-D matrix and requires three 3-D
FFT passes.

6 EFFECTS OF TIME-STEPPING AND

FORCE-RESOLUTION

6.1 Effects of time-stepping

To estimate effects of finite time-step, we run a series of sim-
ulations that start with the same initial conditions at zinit =
100, have the same force resolution ∆x = 0.33 h−1Mpc, and
differ only by the time-stepping parameters. Specifically, we
run four realisations with box size 1h−1Gpc, Np = 1000
and Ng = 3000. The number of time-steps was changing al-
most by a factor of two from one simulation to another with
Ns = 34, 68, 147, 302. The two runs with Ns = 34, 68 have
the time-step ∆a/a ≈ 0.15, 0.06 all the time, while the other
two runs have ∆a/a at z > 3 limited to ∆a/a ≈ 0.036, 0.015
for Ns = 147, 302 correspondingly, and a constant ∆a at
later moments. At z = 0 they had ∆a/a ≈ 0.014, 0.006 for

c© 0000 RAS, MNRAS 000, 000–000

8 Klypin & Prada

Figure 2. Effects of the number of time-steps on the amplitude
and convergence of the power spectrum. The simulations have
the same initial conditions, number of particles Np = 1000, box
size 1h−1Gpc and force resolution ∆x = 0.33h−1Mpc. The only
difference between P (k) for various realisations, relative to the
power spectrum of the simulation with the largest number of time-
steps Ns = 302, is the adopted number of time-steps, which is
indicated in the plots. Results clearly converge when the number
of steps increases and becomes & 100 with very little difference
between simulations with Ns = 147 and Ns = 302.

Figure 3. The same as in Figure 2 but for the convergence of the
density distribution function. Results clearly converge when the
number of time-steps increases and becomes & 100. However, a
smaller number of steps results in a dramatic suppression of the
number of high-density regions where DM particles move very
fast, which is observed as an artificial scale-dependent bias.

Ns = 147, 302 respectively. For comparison, a run with a
constant ∆a, initial zinit = 39, and Ns = 40 has ∆a/a =
0.024 at z = 0 and ∆a/a ≈ 0.1 at z = 3.

Figure 2 shows results for the power spectrum of fluc-
tuations relative to the power spectrum of the simulation
with the largest number of time-steps Ns = 302. There are
clearly significant errors in the simulations with the smaller
number of steps. Note that the errors are small at long waves
which indicates that even a small number of steps is suffi-
cient for tracking the linear growth of fluctuations. However,
the errors dramatically increase at small scales because the
code cannot keep particles with large velocities inside dense
regions. When the number of steps increases the accuracy
also improves very substantially, we clearly see converge of
the power spectrum when the number of steps increases and
becomes & 100.

The power spectrum may give somewhat too optimistic
impression. After all, even 34 time-steps give an error in
P (k) of only 3% at k ∼ 0.3 hMpc−1. The problem is that
the error is much larger if we look at dense regions. We study
this effect by analyzing the density distribution function of
dark matter PDF, i.e. the fraction of volume occupied by
cells with a given overdensity δ. In order to do that we find
the density in each cell of the 30003 mesh, and count the
number of cells in a given density range (δ, δ+∆δ). Figure 3,
bottom panel, shows the PDF for those simulations with
different number of time-steps. At low densities, the PDF
is relatively insensitive to the number of steps, and this is
why the errors in P (k) were also reasonable at long-waves.
The situation is quite different at large densities: relative
errors are very large for densities δ > 1000, see top panel
in Figure 3. The plot also shows a clear convergence for the
simulations with the larger number of steps with very little
difference between Ns = 147 and Ns = 302.

6.2 Effects of force resolution

Figures 1 and 2 in the main text show how the power spec-
trum converges as the force and mass resolution increase.
Here we present results of some additional tests. In order
to study the effects of the force resolution we run the sim-
ulations with the same number of time-steps Ns = 136 and
number of particles Np = 10003, and change the force res-
olution from ∆x = 0.25 h−1Mpc to 1h−1Mpc by running
the same initial conditions using different mesh-sizes. The
smallest mesh has the same number of grid points as the
the number of particles Ng = Np = 1000. We then run other
simulations with Ng = 20003, 30003, and 40003 meshes. We
also run an additional simulation with Ng = 20003 but with
twice larger time-steps (Ns = 270). Figure 4 presents the ra-
tio at z = 0 of the power spectrum P (k) in each simulation
to that with the highest resolution Ng = 4000.

Figure 5 shows the evolution of the power spectra
(scaled by k2 to reduce the dynamical range) in these simula-
tions. Results indicate ∼ 1% convergence for k <∼ 1hMpc−1.
At smaller scales the error increases, but it is still ∼ 20−30%
even at k ≈ (3 − 5) hMpc−1, which is also consistent with
what we find from the comparison with the MultiDark sim-
ulations in Figure 1 (left panel).

The evolution of the power spectra presented in Figure 5
demonstrates significant suppression of fluctuations for the

c© 0000 RAS, MNRAS 000, 000–000

GLAM desciption 9

Figure 4. Effects of force resolution on the power spectrum P (k)
at z = 0 of a series of simulations with the same number of par-
ticles Np = 10003 and computational box L = 1000h−1Mpc. We
run these simulations for grid sizes of Ng =1000, 2000, 3000, and
4000 with the force resolution ranging from ∆x = 0.25h−1Mpc to
1h−1Mpc. The plot shows the ratio of the power spectrum P (k)
in each simulation to that set-up with the highest resolution run
Ng = 4000. The dashed-curve is for a simulation with twice larger
number of time-steps. With a resolution of ∆x = 0.5h−1Mpc the
number of steps Ns ≈ 100 was sufficient.

simulation with the same number of particles and mesh cells
Ng = Np = 1000.

REFERENCES

Bryan G. L. et al., 2014, Rev.Astrn.Astrophys., 211, 19
Feng Y., Chu M.-Y., Seljak U., 2016, ArXiv e-prints
Habib S. et al., 2014, ArXiv e-prints
Hockney R. W., Eastwood J. W., 1988, Computer simula-
tion using particles

Izard A., Crocce M., Fosalba P., 2015, ArXiv e-prints
Klypin A., Holtzman J., 1997, ArXiv Astrophysics e-prints
Klypin A. A., Shandarin S. F., 1983, MNRAS, 204, 891
Koda J., Blake C., Beutler F., Kazin E., Marin F., 2016,
MNRAS, 459, 2118

Kravtsov A. V., Klypin A. A., Khokhlov A. M., 1997,
Rev.Astrn.Astrophys., 111, 73

Springel V., 2005, MNRAS, 364, 1105
Swarztrauber P., 1984, Parallel Computing, 1, 45
Tassev S., Eisenstein D. J., Wandelt B. D., Zaldarriaga M.,
2015, ArXiv e-prints

Tassev S., Zaldarriaga M., Eisenstein D. J., 2013, Journal
of Cosmology and Astroparticle Physics, 6, 036

Teyssier R., 2002, Astr.Astrophy., 385, 337
White M., Tinker J. L., McBride C. K., 2014, MNRAS,
437, 2594

Figure 5. Evolution of the power spectrum with redshift for the
various simulations. Better force resolution increases the power
spectrum, but there are clear indications of convergence at a fixed
wavenumber. The simulation with the number of particles equal
to the mesh-size (labeled 1Mpc in the plot) shows disproportion-
ally large suppression of fluctuations at initial stages of evolution.

c© 0000 RAS, MNRAS 000, 000–000

