- (1) $D [h_{\text{cosmo}}^{-1} \text{Mpc}] = \text{luminosity distance}.$
- (2) z = redshift.
- (3) $l [\deg] = \text{Galactic longitude}.$
- (4) $b [\deg] = \text{Galactic latitude}.$
- (5) M_{200} [h_{cosmo}^{-1} M_{\odot}] = mass defined with respect to 200 times the critical density of the Universe
- (6) M_{500} [h_{cosmo}^{-1} M_{\odot}] = mass defined with respect to 500 times the critical density of the Universe.
- (7) R_{500} [h_{cosmo}^{-1} Mpc] = radius corresponding to M_{500} .
- (8) T_{drop} [#] = central temperature drop (0.4, 0.6, 0.8, 1) that defines the type of cluster.
- (9) P_{500} [$h_{\text{cosmo}}^{1/2}$ keV cm⁻³] = pressure normalisation defined with respect to R_{500} .
- (10) T_{Mantz} [keV] = temperature from the centrally-excised $M_{500} T$ relation of Mantz et al. (2010) or Mantz et al. (2016) depending on the catalogue.
- (11) T_{500} [keV] = final R_{500} -volume-averaged temperature (not centrally-excised) used as input for the XSPEC apec model to obtain volume-integrated fluxes, luminosities and counts.
- (12) APEC_{norm} [cm⁻⁵] = XSPEC apec normalisation within R_{500} .
- (13) $Y_{\rm SZ}$ $[h_{\rm cosmo}^{-2.5} \,{\rm Mpc^2}] = {\rm Sunyaev\text{-}Zel'}$ dovich signal within R_{500} .
- (14) $Y_{\text{SZ,HE}} [h_{\text{cosmo}}^{-2.5} \text{Mpc}^2] = \text{Sunyaev-Zel'dovich signal within } R_{500,\text{HE}} \text{ which refers to the hydrostatic-biased mass.}$
- (15) $Y_{\rm X}$ [$h_{\rm cosmo}^{-2.5}$ M_{\odot} keV] = M_{gas} × $T_{\rm 500,HE}$ within $R_{\rm 500,HE}$ for comparison with Vikhlinin et al. (2009).
- (16) $M_{\rm gas}$ $[h_{\rm cosmo}^{-2.5} {\rm M}_{\odot}] = {\rm gas \ mass \ calculated \ from \ the \ gas \ profile \ integrated \ within \ } R_{500,{\rm HE}}.$
- (17) $F_{0.1-2.4}$ [erg cm⁻² s⁻¹] = XSPEC apec observer-frame unabsorbed flux within R_{500} and 0.1-2.4 keV energy range (metallicity is fixed to 0.3).
- (18) $F_{0.5-2}$ [erg cm⁻² s⁻¹] = as above but for the 0.5-2 keV energy range.
- (19) $L_{0.1-2.4}$ [erg s⁻¹] = XSPEC APEC rest-frame unabsorbed luminosity within R_{500} and 0.1 2.4 keV energy range.
- (20) $L_{0.5-2}$ [erg s⁻¹] = as above but for the 0.5-2 keV energy range.
- (21) L_{bol} [erg s⁻¹] = as above but bolometric in the the 0.01 100 keV energy range.
- (22) count rate [ph s⁻¹] = observer-frame eROSITA count rate (including absorption) within R_{500} and in the 0.5-2 keV energy range obtained as in Pillepich et al. (2012) without Poissonian noise.
- (23) to (32) $F_{0.5-2,\mathrm{proj}}^{0-9}$ [erg cm⁻² s⁻¹] = observer-frame unabsorbed fluxes in the 0.5 2 keV energy range of galaxy clusters projected onto the sky corresponding to 10 spherical shells at $r_{i=0-9} = (\Delta r \times i) + \Delta r/2$ with thickness $\Delta r = R_{500}/10$, used to describe the X-ray profile of each cluster, if summed return $F_{0.5-2}$ (entry 18).
- (33) to (42) $Y_{\rm SZ,proj}^{0-9}$ $[h_{\rm cosmo}^{-2.5}~{\rm Mpc^2}] = {\rm same}$ as above but for the Sunyaev-Zel'dovich signal, if summed return $Y_{\rm SZ}$ (entry 13).